## Sudden cardiac death: Primary and secondary prevention

By Kai Chi Chan Penultimate Year Medical Student St George's University of London at UNic Sheba Medical Centre



# Definition

- "Sudden cardiac arrest (SCA) and sudden cardiac death (SCD) refer to the sudden cessation of cardiac activity with hemodynamic collapse, typically due to sustained ventricular tachycardia/ventricular fibrillation. These events mostly occur in patients with structural heart disease (that may not have been previously diagnosed), particularly coronary heart disease."
- "The event is referred to as SCA (or aborted SCD) if an intervention (e.g. defibrillation) or spontaneous reversion restores circulation, and the event is called SCD if the patient dies."

# Epidemiology

- Approx. I/I,000 per year
- Male : Female = 3:1
- Peak incidence at 45 75 years old
  - Follows incidence of ischemic heart disease
- In those aged <35 = male predominance</li>
  - Sports activity is associated with increased risk of SCD

# Pathophysiology

- Most common electrophysiological mechanism leading to SCD = tachyarrhythmias
  - Ventricular Tachycardia
    - Rapid but regular
    - Can lead to VF
    - Monomorphic (all beats the same)
    - Polymorphic
  - Ventricular Fibrillation
    - Rapid and uncoordinated contraction of the ventricles
    - Progresses to Asystole (no cardiac electrical activity) →
      SCD

# Causes

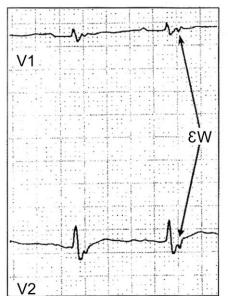
- Structural Abnormalities = most cases
  - MI / post-MI remodeling
    - Premature Ventricular Contractions
  - Ventricular hypertrophy
  - Anomalies in the coronary arteries (congenital or acquired)
  - HOCM (Hypertrophic obstructive cardiomyopathy)
  - Dilated cardiomyopathy
  - Arrhythmogenic right ventricular cardiomyopathy
  - Valvular disease (+/- infective endocarditis)
    - Aortic stenosis
    - Mitral valve prolapse
- Tissue level
  - Re-entry (i.e.WPW)
  - Wave break mechanism

### • Sub-cellular

- Ion channelopathies
  - Congenital long QT syndrome
  - Brugada's syndrome (dysfunctional Na<sup>+</sup> channels in myocytes)
- Other
  - Commotio cordis (traumatic blow to the chest)
  - Myocarditis
  - Kawasaki disease
  - PE
  - Aortic dissection/ ruptured aortic aneurysm

# Ischemic Heart Disease

- Post MI remodeling → scar formation + interstitial fibrosis
- Scar can be a focus for reentrant tachyarrhythmias
- Postmortem findings of SCD commonly find extensive atherosclerosis
  - In SCA, 40-86% have 75% stenosis
- Cardiac Surgery Study → improving/restoring blood flow to ischemic myocardium decreased risk of SCD
- Nonatherosclerotic coronary artery problems increase SCD risk:
  - Congenital
  - Coronary artery embolism
  - Coronary arteritis


# Non-ischemic cardiomyopathies

- Dilated Cardiomyopathy
  - Can be from previous MI, ischemia, non-ischemic
  - 7.5 / 100,000
  - I0% of SCD cases
  - 10 50% mortality within 1 year
  - Causes unknown (viral? AA? Genetic? Alcohol?)
  - Extensive fibrosis of subendocardium  $\rightarrow$  dilated ventricles  $\rightarrow$  reentrant tachyarrhythmias
  - 80% have non-sustained VT (<30 seconds)</li>
    - But not a predictor of SCD
  - Death due to VT
  - Use of antiarrhythmics for NSVT can actually be proarrhythmic and generate VT / VF

### • Hypertrophic cardiomyopathy

- Autosomal dominant (incomplete penetrance)
- Mutation in 1 of the 45+ genes for proteins in the myocyte sarcomere
- SCD incidence = 2-4%/year for adults
  - 4-6% / year for <30
- Most common cause of SCD in those < 30</li>
- Majority who die from SCD are previously asymptomatic
- Can occur at rest / minimal effort
  - But usually after vigorous exertion

- Arrhythmogenic right ventricular cardiomyopathy
- RV wall is replaced with firbofatty tissue
  - Inclusion of septum / LV = poorer prog
- Up to 50% = familial
- Men > Women
- Annual incidence of SCD = 2%
- Presentation:
  - RVH/dilation
  - Mono/polymorphicVT
  - LBBB
  - Atrial arrhythmias in 25%
- However, SCD is the 1<sup>st</sup> manifestation of the disease in many
- Epsilon wave in ECG



# Valvular Disease

- Aortic stenosis
  - SCD decreased with Aortic Valve Replacement
  - But still 2<sup>nd</sup> commonest cause of death post op in this population
  - Highest risk is within 3 weeks post op

# Congenital heart disease

- Tetralogy of fallot
- Transposition of the great arteries
- Marfans
- Mitral valve prolapse
- Congenital heart block

# Primary electrophysiological abnormalities

- Congenital Long QT syndrome
  - Idiopathic LQTS is Rare familial disorder
  - Jervell-Lange-Nielsen syndrome (10%)
    - associated with congential deafness
    - Autosomal recessive
  - Romano-Ward Syndrome (90%)
    - No congenital deafness
    - Autosomal dominant
  - Ion Channel impairment (Na<sup>+</sup> and K<sup>+</sup>)
  - Susceptible to develop Torsade du pointes
  - Risk of SCD increases with:
    - Hypokalemia, certain medications, emotional extremes, vigorous activity

### Probability of congenital LQTS

- ECG criteria
  - Long QT
  - Torsade du pointes
  - Notched T waves
  - T wave alternans
  - Bradycardia for age
- Clinical Criteria
  - Syncope (+/- stress)
  - Deafness
- Family history of LQTS or SCD

### Acquired LQTS

- Antiarrhythmics
  - Especially:
    - class Ia (Quinidine / procainamide)
    - Class III (sotolol / amiodarone)
- Electrolyte abnormalities
- Cerebrovascular disease
- Altered nutritional state
- Drugs (tricyclic's, Haldol, erythromycin)

# Wolff-Parkinson-White Syndrome

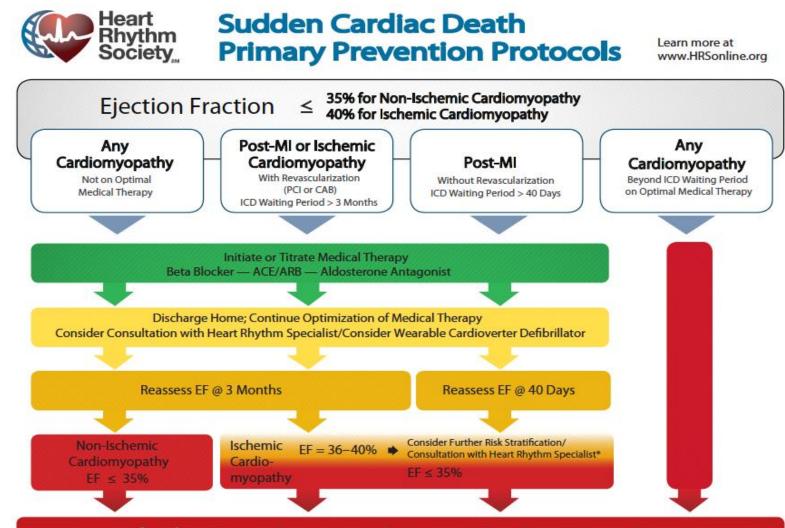
- Rare cause of SCD
- Atrio-ventricular accessory pathway results in ventricular pre-excitation
  - Short PR / Wide QRS / delta wave
- SCD from AF + rapid ventricular response that induces VF
- Treatment with digoxin / adenosine / verapamil are CONTRAINDICATED in WPW + AF
  - Accelerates conduction through accessory pathway  $\rightarrow$  potentiates VF and SCD



# Others

- 2 other important causes of SCD to mention
- PE
- Aortic dissection / aneurysmal rupture




# **Risk Factors**

- Left Ventricular impairment (EF <30 35%)</li>
  Most potent risk factor
- Same for those of Ischemic heart disease
- Family history
- Heart Failure
- Impaired left ventricular systolic function
- Non-sustainedVT
- Sustained VT (>30 seconds)
- Previous MI
- Cocaine / amphetamine use
- Hypokalemia / hypomagnesaemia

# Primary prevention

- Reduce risks of ischemic heart disease
- Testing of other relatives if a diagnosis is made
- Pre-participation cardiovascular screening of young competitive athletes by a 12-lead ECG
- Detection and treatment of cardiac abnormalities such as hypertrophic / dilated cardiomyopathy.
- ICD for patients with a substantial risk of SCD associated with cardiac arrhythmias
- Education/training in CPR for those you live with

## Primary prevention



**Refer for Consultation with Heart Rhythm Specialist** 



also increase the VF threshold

 Also decrease the rate of ventricular ectopy in post MI patients

# Investigation of 1<sup>st</sup> degree relatives

- 12-lead ECG
- Echo
- Holter monitor
- Exercise ECG
- Imaging
  - CXR
  - Cardiac MR / CT / nuclear
- Cardiac catheterisation
  - Assessment of ventricular function
  - Assessment of coronary arteries
- Genetics
  - LQTS, Brugada's, HOCM

# Secondary Prevention

- ICD (implantable cardioverterdefibrillator)
- Ablative surgery / trans-catheter ablation
- Cardiac transplant
- Education/training in CPR for those you live with

# Thank You!